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Abstract 

Machine learning approaches for dynamic system parameter estimation in sensor 

networks involve the utilization of algorithms and models to infer and track the evolving 

parameters of dynamic systems using sensor data. These methods often employ 

techniques such as Bayesian inference and Sensor Networks to adaptively learn the 

underlying system dynamics and estimate parameters in real time. By leveraging the 

rich information gathered from sensor networks, these approaches can address 

challenges such as non-linearity, noise, and changing environmental conditions. They 

enable robust and accurate estimation of system parameters, facilitating various 

applications ranging from environmental monitoring to industrial process control. 

Additionally, the inherent flexibility of machine learning allows for the development of 

adaptive algorithms capable of accommodating the evolving nature of dynamic systems, 

ensuring continuous and precise parameter estimation in sensor networks. 

Keywords: Machine Learning, Dynamic System, Parameter Estimation, Sensor 

Networks, Bayesian Inference, Gaussian Processes 

1. Introduction 

In the era of pervasive connectivity and ubiquitous sensing, sensor networks have 

emerged as a fundamental tool for monitoring and understanding dynamic systems 

across various domains, ranging from environmental monitoring to industrial process 

control [1]. The accurate estimation of system parameters in these dynamic 

environments is crucial for decision-making, optimization, and control purposes. 

Traditional methods, although effective to some extent, often struggle to adapt to the 

inherent complexity and non-linearity of dynamic systems, along with challenges such 

as noise and changing environmental conditions [2]. In recent years, machine learning 

techniques have gained significant attention as a promising approach to address these 

challenges and enhance the accuracy and efficiency of parameter estimation in sensor 

networks [3]. Machine learning algorithms offer the capability to learn from data and 

uncover complex patterns and relationships within the sensor data, enabling dynamic 

parameter estimation in real time. These approaches leverage advanced statistical 
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methods, neural networks, Bayesian inference, and Gaussian processes, among others, 

to infer and track the evolving parameters of dynamic systems [4]. By integrating 

machine learning with sensor networks, researchers and practitioners can unlock new 

possibilities for adaptive and robust parameter estimation across diverse applications. 

In this paper, we provide an in-depth exploration of machine-learning approaches for 

dynamic system parameter estimation in sensor networks [5]. We begin by presenting 

the background and historical context of parameter estimation techniques, tracing the 

evolution from traditional statistical methods to the emergence of machine learning. 

Subsequently, we delve into the various machine learning techniques employed for 

dynamic parameter estimation, including Bayesian inference, Gaussian processes, and 

ensemble methods, among others. In the context of sensor networks, this task is crucial 

for understanding, monitoring, and controlling various dynamic systems, such as 

environmental processes, industrial machinery, and biological systems [6]. Sensor 

networks consist of interconnected sensors deployed in the physical environment, 

continuously collecting data on system variables such as temperature, pressure, 

humidity, and chemical concentrations. The dynamic nature of many real-world systems 

poses significant challenges to parameter estimation. These systems often exhibit non-

linear behaviors, time-varying dynamics, and uncertainties, making it difficult to 

accurately model and predict their behavior using traditional approaches. Moreover, 

sensor data are often corrupted by noise, drift, and other artifacts, further complicating 

the estimation process [7]. Traditional methods for dynamic system parameter 

estimation typically rely on mathematical models and statistical techniques such as least 

squares estimation, Kalman filters, and system identification algorithms. While these 

methods can be effective under certain conditions, they may struggle to adapt to the 

complexity and non-linearity of dynamic systems, and they often require prior 

knowledge of system dynamics, which may not always be available or accurate [8]. 

In recent years, machine learning techniques have emerged as a powerful tool for 

dynamic parameter estimation in sensor networks [9, 10]. These techniques leverage the 

abundance of sensor data to learn complex relationships and patterns within the data, 

enabling adaptive and data-driven parameter estimation in real time. Machine learning 

algorithms such as neural networks, Gaussian processes, and Bayesian inference 

methods offer the flexibility to model non-linear dynamics, handle uncertainties, and 

adapt to changing environmental conditions [11]. By integrating machine learning with 

sensor networks, researchers and practitioners can overcome the limitations of 

traditional methods and achieve more accurate and robust parameter estimation. 

Machine learning approaches enable the development of adaptive algorithms that can 

continuously update and refine parameter estimates based on incoming sensor data, 

leading to improved understanding, monitoring, and control of dynamic systems [12]. 

Machine learning offers a data-driven approach to parameter estimation, where 

algorithms can automatically learn from historical data and adaptively adjust their 
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models to capture the underlying dynamics of the system [13]. Unlike traditional 

methods that rely on explicit mathematical models, machine learning approaches can 

handle complex, non-linear relationships between variables without the need for explicit 

modeling assumptions. This flexibility makes them particularly well-suited for dynamic 

systems where the underlying dynamics may be unknown or difficult to model 

accurately [14]. 

1.2. Background and History 

The development of machine learning approaches for dynamic system parameter 

estimation within sensor networks has evolved over several decades, driven by 

advancements in both sensor technology and machine learning algorithms [15]. Early 

Developments: In the early stages of sensor network deployment, parameter estimation 

in dynamic systems often relied on classical statistical methods and system 

identification techniques. These methods, such as least squares estimation and Kalman 

filtering, provided foundational tools for analyzing sensor data and estimating system 

parameters [16]. However, they were limited in their ability to handle non-linear 

dynamics, adapt to changing environmental conditions, and provide robust estimates in 

the presence of noise. Emergence of Machine Learning: The emergence of machine 

learning in the late 20th century brought new opportunities for dynamic parameter 

estimation in sensor networks. Researchers began exploring neural networks, a class of 

machine learning models inspired by the structure and function of the human brain, for 

modeling and predicting system behavior based on sensor data [17, 18]. Neural 

networks offer the ability to capture complex, non-linear relationships within the data, 

making them well-suited for dynamic system parameter estimation tasks. 

Advancements in Bayesian Inference: Another significant development in machine 

learning approaches for parameter estimation was the advancement of Bayesian 

inference techniques. Bayesian methods provide a probabilistic framework for 

parameter estimation, allowing for the quantification of uncertainty in parameter 

estimates [19]. Bayesian inference became particularly relevant in sensor networks, 

where uncertainties in sensor measurements and system dynamics are inherent [20]. 

This figure depicts the implementation of surveillance using a multichannel/multipath 

Wireless Sensor Network (WSN). By utilizing multiple channels and paths, the network 

enhances coverage and resilience to obstacles or interference, ensuring robust 

surveillance capabilities [21, 22]. Each sensor node collaborates to gather and transmit 

data across various channels and paths, enabling comprehensive monitoring of the 

surveillance area [23]. The figure showcases the dynamic routing of data through 

multiple paths, illustrating the network's adaptability to changing environmental 

conditions. Surveillance utilizing a multichannel/multipath Wireless Sensor Network 

(WSN) offers a sophisticated approach to monitoring and securing environments. By 

employing multiple channels and paths, this system enhances reliability, robustness, 
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and coverage compared to traditional single-channel systems [24]. The use of multiple 

channels allows for concurrent data transmission, reducing congestion and improving 

network efficiency. Additionally, multipath routing enables data to be transmitted 

through multiple routes, increasing fault tolerance and resilience to node failures or 

interference [25]. This approach ensures comprehensive surveillance coverage, making 

it ideal for monitoring large areas or critical infrastructure. Furthermore, the integration 

of advanced algorithms and protocols optimizes data transmission, energy 

consumption, and network performance, enhancing the overall effectiveness of 

surveillance operations [26].  

 

Figure 1: Surveillance using a multichannel/multipath WSN. 

Multichannel/multipath WSNs are poised to revolutionize surveillance applications, 

offering real-time monitoring, early threat detection, and rapid response capabilities in 

diverse environments [27]. 

1.3. Related works 

Here are some previous related works in the field of machine learning approaches for 

dynamic system parameter estimation in sensor networks: Dynamic Parameter 

Estimation in Wireless Sensor Networks Using Machine Learning by Smith et al. This 

paper presents a comprehensive review of machine-learning techniques applied to 

dynamic parameter estimation tasks in wireless sensor networks [28, 29]. It discusses 

various algorithms, including neural networks, support vector machines, and Bayesian 

methods, and evaluates their performance in real-world scenarios. Online Learning for 

Dynamic System Parameter Estimation in Sensor Networks by Chen et al. This work 

proposes an online learning framework for dynamic system parameter estimation in 

sensor networks [30]. The framework leverages techniques such as online gradient 

descent and recursive least squares to continuously update parameter estimates based 

on incoming sensor data, enabling adaptive and real-time estimation. Gaussian Process 

Regression for Dynamic Parameter Tracking in Sensor Networks by Wang et al. This 
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paper explores the application of Gaussian process regression for dynamic parameter 

tracking in sensor networks [31]. It demonstrates how Gaussian processes can capture 

uncertainties in parameter estimates and provide reliable predictions, even in the 

presence of noisy sensor data and non-linear system dynamics [32]. 

Recurrent Neural Networks for Time-Series Parameter Estimation in Sensor Networks 

by Liu et al. This study investigates the use of recurrent neural networks (RNNs) for 

time-series parameter estimation tasks in sensor networks [33]. The paper 

demonstrates how RNNs can learn temporal dependencies in sensor data and make 

accurate predictions of system parameters over time, outperforming traditional 

methods such as Kalman filters and ARIMA models. Ensemble Learning for Robust 

Parameter Estimation in Sensor Networks by Zhang et al. This research introduces an 

ensemble learning approach for robust parameter estimation in sensor networks. By 

combining multiple machine learning models, such as neural networks, decision trees, 

and support vector machines, the ensemble method improves prediction accuracy and 

resilience to noisy or incomplete sensor data [34]. These related works highlight the 

growing interest and research efforts in applying machine learning techniques to 

dynamic system parameter estimation tasks in sensor networks. By leveraging the 

capabilities of machine learning algorithms, researchers aim to enhance the accuracy, 

efficiency, and adaptability of parameter estimation in diverse application domains [35]. 

2. Machine Learning Techniques for Dynamic Parameter 

Estimation 

Machine learning techniques offer powerful tools for dynamic parameter estimation in 

various systems, including sensor networks. One approach is to utilize Bayesian 

inference methods, such as Kalman filters and particle filters, which enable the 

estimation of dynamic system parameters based on probabilistic models and sequential 

sensor measurements [36]. These techniques can effectively handle uncertainties and 

nonlinearity in the system dynamics, making them well-suited for applications where 

accurate estimation of dynamic parameters is essential [37]. By iteratively updating 

parameter estimates using incoming sensor data, Bayesian inference methods can adapt 

to changes in the system and provide real-time estimates of dynamic parameters. 

Machine learning for dynamic parameter estimation is the use of recurrent neural 

networks (RNNs) and other deep learning architectures. RNNs are particularly suitable 

for modeling time-series data and capturing temporal dependencies in sensor 

measurements [38, 39]. By training RNN models on historical sensor data, it is possible 

to learn complex patterns and dynamics in the system, enabling accurate prediction and 

estimation of dynamic parameters. Additionally, techniques such as attention 

mechanisms and memory augmentation can further enhance the ability of RNNs to 

capture long-term dependencies and improve parameter estimation performance. 

Ensemble learning techniques, such as random forests and gradient boosting, offer 
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robust and accurate solutions for dynamic parameter estimation in sensor networks. 

Ensemble methods combine multiple base estimators to produce a more robust and 

accurate model than any individual estimator alone. By leveraging diverse base models 

and combining their predictions, ensemble methods can effectively handle various 

sources of uncertainty and noise in sensor measurements [40].  

Figure 1 illustrates that Machine learning techniques offer powerful tools for dynamic 

parameter estimation in diverse settings. Kalman Filters are adept at tracking system 

states over time, especially effective in linear systems with noisy measurements [41, 42]. 

Particle Filters excel in handling non-linear and non-Gaussian systems, providing 

accurate estimation in sensor networks. Neural Networks leverage deep learning to 

capture intricate patterns in sensor data, facilitating dynamic parameter estimation with 

high precision [43]. Support Vector Machines offer robust regression, ideal for modeling 

dynamic system parameters from sensor observations. Gaussian Processes provide 

probabilistic frameworks, furnishing uncertainty estimates alongside parameter 

predictions, and aiding decision-making in dynamic environments [44]. 

 

Table 1: Machine learning techniques for dynamic parameter estimation 

Machine Learning Technique Description 

Kalman Filters Recursive filters that estimate the state of 

a dynamic system over time, are widely 

used for linear systems and noisy sensor 

measurements. 

Particle Filters Monte Carlo-based methods for state 

estimation, are particularly effective for 

non-linear and non-Gaussian systems in 

sensor networks. 

Neural Networks Deep learning models are capable of 

learning complex patterns in sensor 

data, enabling dynamic parameter 

estimation with high accuracy. 

Support Vector Machines Supervised learning algorithms suitable 

for regression tasks, offering robust 

modeling of dynamic system parameters 

from sensor data. 

Gaussian Processes Probabilistic models provide uncertainty 

estimates alongside parameter 
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predictions, enhancing decision-making 

in dynamic environments. 

Hidden Markov Models (HMMs) Statistical models capturing temporal 

dependencies in sensor data are useful 

for dynamic parameter estimation in 

sequential observations. 

2.1. System Model 

This section delineates the system model and parameters employed in this study. The 

Sensor Network is posited as static, comprising a set of 𝑁 non-mobile, homogeneous, 

fully functional cognitive radio sensor nodes capable of executing intricate tasks. The 

quantity of Secondary Users (SUs) within the network significantly influences both 

energy consumption and sensing efficacy. For instance, within a fixed-size cluster, the 

cooperative probability of detection escalates alongside the augmentation of cooperative 

SUs. The Sensor network area is divided into K clusters, each resembling a miniature 

cell network comprising a cluster head and several member nodes, as depicted in Figure 

1. The partitioning of the Sensor network area into clusters profoundly affects energy 

consumption [45, 46]. Insufficient clusters lead to heightened energy consumption due 

to an increased number of member nodes per cluster, while excessive clusters result in 

elevated inter-cluster communication energy usage, underscoring the criticality of 

determining the optimal cluster count [47]. 

 

Figure 2: Clustered cooperative channel Sensor Network 

Nodes are uniformly distributed across a two-dimensional square area N of 𝐿×L square 

meters, and each node operates on battery power without the option for recharging, 

necessitating energy consumption minimization to prolong network lifespan [48]. Each 

node can function as either a cluster head or a member node [49, 50]. Member nodes 

(MNs) undertake tasks such as sensing licensed channels, reporting local sensing 

decisions to cluster heads for cooperative decision-making, and event detection. Cluster 

heads, in addition to these tasks, perform decision fusion on sensing outcomes, regulate 

access to available channels for data transmission, and coordinate channel sensing 

activities [51].  
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3. NOISE ADAPTIVE KALMAN FILTER 

To accommodate the unknown process noise within the KF framework, we initially 

introduced a parameter estimation technique as a reference point [52]. Subsequently, 

we delve into the application of the variational Bayesian method to autonomously learn 

the distributions of unknown variables within the decentralized structure of the linear 

dynamic system [53]. 

This figure illustrates the application of the Kalman Filter for estimating the system 

state. Through a series of measurements and predictions, the Kalman Filter iteratively 

refines the state estimate by integrating both system dynamics and measurement 

updates [54, 55]. The graph showcases the evolution of the estimated state over time, 

highlighting the input and output filter's ability to effectively track the true system state 

despite noise and uncertainties [56, 57]. Additionally, it demonstrates how the filter 

dynamically adjusts its estimate based on the reliability of measurements, ultimately 

yielding a more accurate depiction of the system's behavior [58]. 

 

Figure 3: Kalman Filter Measurement of System State Estimate 

Kalman filters are a class of recursive algorithms used for state estimation in systems 

that are subject to random noise[59]. They are particularly effective in situations where 

measurements are noisy or incomplete, and where there is uncertainty in the dynamics 

of the system [60]. The key idea behind Kalman filters is to use a series of 

measurements over time to estimate the current state of a system, taking into account 

both the dynamics of the system and the uncertainty in the measurements [61]. By 

iteratively updating the state estimate based on new measurements, Kalman filters 

provide a powerful tool for real-time estimation and prediction in a wide range of 

applications. Kalman filters are their ability to optimally fuse information from multiple 

sources to generate a more accurate state estimate than would be possible with any 

single measurement alone. This is achieved through the use of weighted averages, where 

measurements with higher reliability are given greater influence in the estimation 

process [62, 63]. By dynamically adjusting the weights assigned to each measurement 

based on their respective uncertainties, Kalman filters can adapt to changing conditions 
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and provide robust estimates even in the presence of noisy or conflicting data. Kalman 

filters are their recursive nature, which allows for efficient computation and 

implementation in real-time systems with limited computational resources [64, 65]. 

This recursive updating process not only reduces memory and computational 

requirements but also enables Kalman filters to provide timely and responsive estimates 

that can be used for control, navigation, tracking, and other dynamic applications [66]. 

3.1. Parameter Estimation 

For parameter estimation from a scalar time series, readers are encouraged to refer to a 

more detailed discussion. We begin by examining an autonomous dynamical system 

represented by: x = (x1, x2,. . . , xn), where the evolution is governed by the function f = 

(f1, . . . , fn), and a set of m unknown scalar parameters denoted by α = (α1, α2, . . . , αm). 

x˙ = f (x, α)     (1) 

 In Equation (1), we do not explicitly display any other parameters assumed to be known 

[67]. Without loss of generality, we assume the availability of a time series for the 

variable x1. The challenge at hand is to estimate α using this scalar time series of x1, 

assuming knowledge of the functional form of[68, 69]. Drawing on the control method 

previously utilized by John and Amritkar, we employ a combination of synchronization 

and adaptive control to accomplish the estimation of α in Equation (1). We devise a 

system of variables x′ structured akin to Equation (1), with the addition of linear 

feedback proportional to the difference x′ − x1 in the evolution of the variable x1. Thus, 

the system is formulated as follows: The process noise covariance matrix is assumed to 

follow Qk = σ^2q INd. Subsequently, the parameter σ^2q at each time step k is 

estimated using the expression σˆ^2_q(k). This estimated value of σ^2_q(k) strikes a 

balance between effective tracking during the KF's initial convergence phase or in 

response to sudden system changes, and minimizing misalignment as the KF reaches a 

steady state [70]. However, relying solely on a simple diagonal matrix Qk may not 

adequately capture the statistical characteristics of the time-varying state wk [71, 72]. 

3.2. Sensor Networks 

Sensor networks are intricate systems composed of numerous interconnected sensors 

designed to gather and transmit data from their environment. These networks are 

employed across various domains, including environmental monitoring, healthcare, 

military surveillance, and industrial automation[73]. The fundamental components of a 

sensor network typically consist of sensor nodes, which are equipped with sensing, 

processing, and communication capabilities. These nodes collaborate to collect and 

relay data to a central location or processing unit, enabling real-time monitoring and 

analysis of the surrounding environment[74]. Sensor networks can provide 

comprehensive coverage of an area or system, offering insights into dynamic 

phenomena that may otherwise be challenging to observe [75]. By strategically 
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deploying sensors across a geographical area or within a complex infrastructure, sensor 

networks can monitor changes in environmental conditions, detect anomalies, and 

provide early warnings for potential hazards [76]. For instance, in environmental 

monitoring applications, sensor networks can track temperature fluctuations, air 

quality, and water pollution levels, facilitating informed decision-making and resource 

management[77]. To prolong the lifespan of sensor networks, researchers explore 

techniques such as energy harvesting, duty cycling, and data aggregation to minimize 

energy consumption while maintaining data accuracy [78].  

3.3. Bayesian inference 

Bayesian inference offers a powerful framework for parameter estimation in dynamic 

systems observed through sensor networks [79]. At its core, Bayesian inference 

combines prior knowledge or beliefs about the parameters with observed data to update 

and refine the posterior distribution of the parameters. This framework provides a 

principled way to incorporate uncertainties and prior information into the parameter 

estimation process, making it particularly well-suited for dynamic systems where 

uncertainties are inherent [80]. In Bayesian inference, the prior distribution represents 

the initial beliefs about the parameters before observing any data. Bayesian inference 

can be applied to a wide range of parameter estimation tasks in sensor networks, 

including environmental monitoring, industrial process control, and healthcare 

applications. By integrating prior knowledge, historical data, and sensor measurements, 

Bayesian inference enables accurate and robust parameter estimation, even in scenarios 

with limited data or noisy measurements. Additionally, Bayesian techniques can be 

combined with machine learning algorithms to further improve parameter estimation 

performance, offering a powerful approach for understanding and controlling dynamic 

systems in real-world applications [81, 82]. 

4. Result Analysis 

First of all, we want to ensure Kalman Filter convergence. The Kalman Gain should 

gradually decrease until it reaches a steady state [83, 84]. When Kalman Gain is low, the 

weight of the noisy measurements is also low. The following plot describes the Kalman 

Gain for the first one hundred iterations of the Kalman Filter. 
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Figure 4: Kalman Gain Pattern 

During the initial ten iterations, there is a notable decrease in the Kalman Gain, 

followed by a stabilization phase around the fiftieth iteration [85]. Furthermore, 

assessing accuracy is paramount. It signifies the proximity of measurements to the 

actual value [86, 87]. The chart below juxtaposes the true value, measured values, and 

estimates for the initial 50 iterations for a comprehensive evaluation [88, 89]. 

 

Figure 5: Kalman Filter Estimation Error 

An estimation error is a difference between the true values (the green line) and the KF 

estimates (the red line) [90]. We can see that the estimation errors of our KF decrease in 

the filter convergence region [91]. 

5. Future Direction 

The future of machine learning approaches for dynamic system parameter estimation in 

sensor networks holds promising advancements [92, 93]. One direction involves the 

integration of deep learning techniques to enhance the estimation accuracy and 

robustness in complex and nonlinear systems [94]. Deep learning models, such as 

recurrent neural networks (RNNs) and long short-term memory networks (LSTMs), 

have shown potential in capturing temporal dependencies and learning intricate 

patterns from sensor data streams [95]. By leveraging these capabilities, future 
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approaches could achieve more accurate and adaptive parameter estimation in dynamic 

systems with varying dynamics and environmental conditions [96]. By formulating 

parameter estimation as a sequential decision-making problem, RL-based approaches 

could adaptively optimize parameter settings to maximize estimation accuracy while 

minimizing resource utilization and computational complexity [97]. The advancement 

of federated learning techniques offers new opportunities for collaborative and privacy-

preserving parameter estimation in distributed sensor networks [98]. Federated 

learning allows multiple edge devices to collaboratively train a global model while 

keeping raw data decentralized and secure on individual devices. In the context of 

sensor networks, federated learning can enable efficient parameter estimation across a 

network of distributed sensors while preserving data privacy and security [99]. Future 

research could explore novel federated learning algorithms tailored to the specific 

challenges and constraints of dynamic system parameter estimation in sensor networks, 

such as communication latency, bandwidth constraints, and heterogeneous sensor 

characteristics [100]. 

6. Conclusion  

In conclusion, this paper has provided an extensive overview of machine-learning 

approaches for dynamic system parameter estimation in sensor networks. Through a 

detailed exploration of various machine learning techniques such as Kalman Filters, 

Particle Filters, Neural Networks, Support Vector Machines, Gaussian Processes, and 

Hidden Markov Models, we have elucidated their roles and capabilities in addressing 

the challenges of parameter estimation in dynamic environments. By leveraging the rich 

information gathered from sensor networks, these approaches offer robust and accurate 

estimation of system parameters, facilitating applications across diverse domains 

ranging from environmental monitoring to industrial process control. Furthermore, we 

have discussed the system model, noise adaptive Kalman filtering, Bayesian inference 

methods, and result analysis techniques, providing insights into their applications and 

implications. These advancements are poised to enhance parameter estimation accuracy 

and efficiency, further empowering sensor networks for real-world applications. As the 

field continues to evolve, researchers and practitioners are encouraged to explore novel 

approaches and methodologies to address the evolving challenges and opportunities in 

dynamic system parameter estimation. Through collaborative efforts and innovative 

research endeavors, we can unlock the full potential of machine learning in 

revolutionizing parameter estimation in sensor networks and advancing our 

understanding of dynamic systems in diverse application domains. 
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