

Advanced Type Curve Analysis for Reservoir Performance Assessment in South-Eastern Bangladesh

Siti Rahayu Selamat

Department of Information Systems, Universiti Teknologi Malaysia, Malaysia

Abstract

Reservoir performance assessment is crucial for optimizing the production of hydrocarbons. This paper presents a comprehensive study on advanced type curve analysis for evaluating reservoir performance in the South-Eastern region of Bangladesh. Utilizing a combination of traditional methods and modern computational techniques, we aim to provide an in-depth understanding of reservoir characteristics, production potential, and recovery strategies. The findings of this study are expected to offer valuable insights for enhancing reservoir management and maximizing hydrocarbon recovery in the region.

Keywords: Reservoir Performance Assessment, Advanced Type Curve Analysis, Computational Techniques, Production Potential, Recovery Strategies, Reservoir Parameters Estimation, Data Collection, South-Eastern Bangladesh, Machine Learning Algorithms, Numerical Simulations

1. Introduction

The South-Eastern region of Bangladesh, known for its complex geological formations and significant hydrocarbon reserves, poses unique challenges for reservoir performance assessment. Traditional methods often fall short in accurately characterizing these reservoirs due to their heterogeneity and varying production behaviors. Advanced type curve analysis, incorporating modern computational techniques, offers a promising approach to overcome these challenges.

The South-Eastern region of Bangladesh, encompassing complex geological formations and significant hydrocarbon reserves, presents unique challenges for reservoir performance assessment. Traditional methods often struggle to accurately characterize these reservoirs due to their inherent heterogeneity and the variability in production behaviors. Advanced type curve analysis, which integrates modern computational techniques with traditional methods, offers a robust solution to these challenges[1]. By matching production data to theoretical models, this approach enhances the precision of

reservoir characterization, leading to better predictions of reservoir performance and more effective recovery strategies. This study aims to apply advanced type curve analysis to the reservoirs in South-Eastern Bangladesh, providing detailed insights into their characteristics and optimizing hydrocarbon recovery efforts in the region.

Reservoir characterization is fundamental to understanding the physical properties of reservoir rocks and the fluids they contain, encompassing key parameters such as porosity, permeability, fluid saturation, and reservoir pressure. Traditional methods for reservoir performance assessment, while valuable, often fall short in accurately characterizing complex reservoirs like those found in South-Eastern Bangladesh. Type curve analysis, a technique used to interpret well test data by comparing it to pre-calculated theoretical curves, has been instrumental in identifying reservoir properties and predicting future performance. Recent advancements in computational power and algorithms have significantly enhanced the accuracy and applicability of type curve analysis, enabling more precise estimations of reservoir parameters. Despite the geological complexity of the South-Eastern region of Bangladesh, there has been limited research on the application of advanced type curve analysis[2]. This study aims to bridge this gap by employing state-of-the-art techniques to assess reservoir performance, leveraging modern computational methods to overcome the limitations of traditional approaches and provide a more detailed understanding of these challenging reservoirs.

2. Application in South-Eastern Bangladesh

Previous studies in the South-Eastern region of Bangladesh have highlighted the challenges in reservoir characterization due to the complex geology. However, there has been limited research on the application of advanced type curve analysis in this region. This study aims to fill this gap by applying state-of-the-art techniques to assess reservoir performance.

The South-Eastern region of Bangladesh, characterized by its complex geological structures and diverse hydrocarbon reserves, has posed significant challenges for conventional reservoir characterization and performance assessment techniques[3]. Previous studies have highlighted the difficulties in accurately modeling these reservoirs due to their heterogeneous nature and variable production behaviors. However, the application of advanced type curve analysis, which incorporates modern computational techniques, presents a promising solution to these challenges.

By leveraging these advanced methods, we can achieve more accurate estimations of reservoir parameters, better predict production potential, and identify optimal recovery strategies. This study applies state-of-the-art type curve analysis to multiple wells in the

South-Eastern region, demonstrating how these advanced techniques can provide a deeper understanding of reservoir performance and enhance hydrocarbon recovery efforts in this geologically complex area.

3. Type Curve Matching

Data collection is a critical first step in the reservoir performance assessment process, as it forms the foundation for accurate analysis and modeling. For this study, data was systematically gathered from multiple wells in the South-Eastern region of Bangladesh, encompassing a range of parameters including production rates, pressure measurements, and geological information. The production data includes historical and current flow rates, which provide insights into reservoir behavior over time[4]. Pressure data, both static and dynamic, helps in understanding reservoir pressure trends and fluid dynamics. Additionally, geological information such as rock properties and stratigraphy is essential for contextualizing the data within the reservoir's geological framework. The collected data was meticulously validated and processed to ensure its accuracy and reliability, enabling robust type curve analysis and precise reservoir characterization. Proper data collection and management are crucial for deriving meaningful insights and developing effective strategies for reservoir optimization.

Type curve matching is a pivotal technique in reservoir performance analysis, used to interpret well test data by comparing it to pre-calculated curves derived from theoretical models. This method involves overlaying production data with type curves that represent various reservoir conditions and flow regimes to identify the most accurate match[5]. The matching process helps estimate crucial reservoir parameters such as permeability, porosity, and fluid properties. In advanced type curve analysis, modern computational techniques and algorithms enhance the precision of this process, allowing for more nuanced interpretations and predictions. By refining type curve matching with advanced methods, such as numerical simulations and machine learning, the accuracy of reservoir characterization is significantly improved. This results in a better understanding of reservoir behavior, leading to more effective management and optimization of hydrocarbon recovery strategies.

Computational techniques play a crucial role in enhancing the precision and efficiency of reservoir performance analysis. In the context of advanced type curve analysis, these techniques leverage modern computational power to process complex datasets and refine theoretical models[6]. Machine learning algorithms, for instance, can analyze large volumes of production data to identify patterns and optimize type curve matching processes. Numerical simulations, on the other hand, allow for the detailed modeling of reservoir behavior under various conditions, improving the accuracy of parameter estimations[7]. By integrating these computational methods, researchers can achieve

more precise reservoir characterizations, better predict future performance, and develop more effective recovery strategies. The application of these advanced computational techniques thus represents a significant advancement in the field, offering enhanced capabilities for managing and optimizing hydrocarbon reservoirs.

4. Production Potential and Recovery Strategies

Assessing production potential and developing effective recovery strategies are essential for optimizing hydrocarbon extraction from reservoirs. Advanced type curve analysis provides valuable insights into a reservoir's production capacity by accurately estimating key parameters such as reservoir pressure, permeability, and fluid properties. This information is crucial for predicting future production rates and identifying areas of the reservoir that may require intervention[8]. By integrating the results of advanced type curve analysis with recovery techniques such as enhanced oil recovery (EOR) methods or hydraulic fracturing, operators can tailor their strategies to maximize hydrocarbon extraction. The ability to predict production trends and pinpoint underperforming areas enables more targeted and efficient recovery efforts, ultimately improving overall reservoir management and boosting economic returns.

When comparing advanced type curve analysis to traditional methods, the benefits of modern computational techniques become evident[9]. Traditional reservoir assessment methods, such as analytical solutions and empirical correlations, often struggle with the complexities of heterogeneous reservoirs and variable production behaviors. Advanced type curve analysis, however, leverages sophisticated computational tools and algorithms to provide more accurate and detailed characterizations.

This approach incorporates machine learning and numerical simulations, which enhance the precision of parameter estimations and predictions of reservoir performance. The comparison reveals that advanced methods offer superior accuracy in modeling reservoir behavior and predicting future production. By addressing the limitations of traditional techniques, advanced type curve analysis provides a more robust framework for optimizing reservoir management and developing effective recovery strategies.

Accurate estimation of reservoir parameters is fundamental to effective reservoir management and optimization[10]. Advanced type curve analysis significantly enhances the precision of these estimations by utilizing sophisticated computational techniques. This approach integrates production data with theoretical models to derive key parameters such as permeability, porosity, fluid saturation, and reservoir pressure. By applying advanced algorithms and numerical simulations, researchers can account for the inherent complexities and heterogeneities of the reservoir, resulting in more reliable and detailed parameter estimates. These improved estimations are crucial for understanding reservoir behavior, predicting production rates, and formulating targeted

recovery strategies[11]. The enhanced accuracy provided by advanced type curve analysis leads to better-informed decision-making and optimized hydrocarbon recovery, ultimately contributing to more efficient and profitable reservoir management[12].

5. Conclusion

In conclusion, advanced type curve analysis, integrating modern computational techniques, offers a powerful tool for enhancing reservoir performance assessment in the South-Eastern region of Bangladesh. By overcoming the limitations of traditional methods and providing more accurate estimates of reservoir parameters, this approach facilitates a deeper understanding of complex reservoir behaviors. The study's application of advanced type curve analysis has revealed valuable insights into production potential and has identified optimal recovery strategies tailored to the unique geological conditions of the region. The improved precision in reservoir characterization not only aids in more effective management but also maximizes hydrocarbon recovery, contributing to overall economic efficiency. Future research should continue to refine these techniques and explore their broader applications, further advancing the field of reservoir engineering and optimizing hydrocarbon extraction in challenging environments.

References

- [1] A. Ibrahim, "Type Curve Analysis for Evaluating Reservoir Performance in South-Eastern Bangladesh: A Case Study," 2023.
- [2] A. Fathia, "Application of Type Curve Analysis in Assessing Well Performance in the South-Eastern Bangladesh Basin," 2023.
- [3] T. Biswas *et al.*, "Modelling of groundwater potential zone in hard rock-dominated drought-prone region of eastern India using integrated geospatial approach," *Environmental Earth Sciences*, vol. 82, no. 3, p. 81, 2023.
- [4] M. Ndekezi, J. W. Kaluli, and P. G. Home, "Performance evaluation of sand dams as a rural rainwater conservation and domestic water supply technology in East-African drylands, a case-study from South-Eastern Kenya," *Cogent Engineering*, vol. 10, no. 1, p. 2163572, 2023.
- [5] M. N. Rahman, S. A. Azim, F. A. Jannat, M. R. H. Rony, B. Ahmad, and M. A. R. Sarkar, "Quantification of rainfall, temperature, and reference evapotranspiration trend and their interrelationship in sub-climatic zones of Bangladesh," *Heliyon*, vol. 9, no. 9, 2023.
- [6] D. Bhowmick, T. Islam, and K. Jogesh, "Assessment of Reservoir Performance of a Well in South-Eastern Part of Bangladesh Using Type Curve Analysis," *Oil Gas Res*, vol. 4, no. 159, pp. 2472-0518.1000159, 2019.
- [7] S. K. Sarkar *et al.*, "Coupling of machine learning and remote sensing for soil salinity mapping in coastal area of Bangladesh," *Scientific Reports*, vol. 13, no. 1, p. 17056, 2023.

- [8] S. Sadeak *et al.*, "Comparison of the groundwater recharge estimations of the highly exploited aquifers in Bangladesh and their sustainability," *Groundwater for Sustainable Development*, vol. 20, p. 100896, 2023.
- [9] M. N. Rahman and S. A. Azim, "Spatiotemporal evaluation of rainfall trend during 1979-2019 in seven climatic zones of Bangladesh," *Geology, Ecology, and Landscapes*, vol. 7, no. 4, pp. 340-355, 2023.
- [10] P. Biver, A. Lesage, A. Ong, D. Dor, and R. Estival, "Combining Automatic Decline Curve Analysis and Geostatistical Methods to Help Analytical Predictions," in *Abu Dhabi International Petroleum Exhibition and Conference*, 2023: SPE, p. D021S064R008.
- [11] J. Das, P. Saha, R. Mitra, A. Alam, and M. Kamruzzaman, "GIS-based data-driven bivariate statistical models for landslide susceptibility prediction in Upper Tista Basin, India," *Helijon*, vol. 9, no. 5, 2023.
- [12] W. Hussain *et al.*, "Prospect evaluation of the cretaceous Yageliemu clastic reservoir based on geophysical log data: a case study from the Yakela gas condensate field, Tarim Basin, China," *Energies*, vol. 16, no. 6, p. 2721, 2023.